FSM/test_on_28377/source/F2837xD_Mcbsp.c

585 lines
15 KiB
C
Raw Normal View History

//###########################################################################
//
// FILE: F2837xD_McBSP.c
//
// TITLE: F2837xD Device McBSP Initialization & Support Functions.
//
//###########################################################################
//
// $Release Date: $
// $Copyright:
// Copyright (C) 2013-2022 Texas Instruments Incorporated - http://www.ti.com/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// Neither the name of Texas Instruments Incorporated nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// $
//###########################################################################
//
// Included Files
//
#include "F2837xD_device.h"
#include "F2837xD_Examples.h"
//
// MCBSP_INIT_DELAY determines the amount of CPU cycles in the 2 sample rate
// generator (SRG) cycles required for the Mcbsp initialization routine.
// MCBSP_CLKG_DELAY determines the amount of CPU cycles in the 2 clock
// generator (CLKG) cycles required for the Mcbsp initialization routine.
//
//
// Defines
//
#define CPU_SPD 200E6
#define MCBSP_SRG_FREQ CPU_SPD/4 // SRG input is LSPCLK (SYSCLKOUT/4)
// for examples
#define CLKGDV_VAL 1
// # of CPU cycles in 2 SRG cycles-init delay
#define MCBSP_INIT_DELAY 2*(CPU_SPD/MCBSP_SRG_FREQ)
// # of CPU cycles in 2 CLKG cycles-init delay
#define MCBSP_CLKG_DELAY 2*(CPU_SPD/(MCBSP_SRG_FREQ/(1+CLKGDV_VAL)))
//
// Function Prototypes
//
void delay_loop(void); // Delay function used for SRG initialization
void clkg_delay_loop(void); // Delay function used for CLKG initialization
//
// InitMcbsp - This function initializes the McBSP to a known state.
//
void InitMcbspa(void)
{
//
// Reset the McBSP
// Disable all interrupts
// Frame sync generator reset
// Sample rate generator reset
// Transmitter reset
// Receiver reset
//
McbspaRegs.SPCR2.bit.FRST = 0;
McbspaRegs.SPCR2.bit.GRST = 0;
McbspaRegs.SPCR2.bit.XRST = 0;
McbspaRegs.SPCR1.bit.RRST = 0;
//
// Enable loop back mode
// This does not require external hardware
//
McbspaRegs.SPCR2.all = 0x0000;
McbspaRegs.SPCR1.all = 0x8000;
//
// RX data delay is 1 bit
// TX data delay is 1 bit
//
McbspaRegs.RCR2.bit.RDATDLY = 1;
McbspaRegs.XCR2.bit.XDATDLY = 1;
//
// No clock sync for CLKG
// Frame-synchronization period
//
McbspaRegs.SRGR2.bit.GSYNC = 0;
McbspaRegs.SRGR2.bit.FPER = 320;
//
// Frame-synchronization pulses from
// the sample rate generator
//
McbspaRegs.SRGR2.bit.FSGM = 1;
//
// Sample rate generator input clock is LSPCLK
//
McbspaRegs.SRGR2.bit.CLKSM = 1;
McbspaRegs.PCR.bit.SCLKME = 0;
//
// Divide-down value for CLKG
// Frame-synchronization pulse width
//
McbspaRegs.SRGR1.bit.CLKGDV = CLKGDV_VAL;
clkg_delay_loop();
McbspaRegs.SRGR1.bit.FWID = 1;
//
// CLKX is driven by the sample rate generator
// Transmit frame synchronization generated by internal
// sample rate generator
//
McbspaRegs.PCR.bit.CLKXM = 1;
McbspaRegs.PCR.bit.FSXM = 1;
//
// Enable Sample rate generator and
// wait at least 2 CLKG clock cycles
//
McbspaRegs.SPCR2.bit.GRST = 1;
clkg_delay_loop();
//
// Release from reset
// RX, TX and frame sync generator
//
McbspaRegs.SPCR2.bit.XRST = 1;
McbspaRegs.SPCR1.bit.RRST = 1;
McbspaRegs.SPCR2.bit.FRST = 1;
}
//
// InitMcbspaInt - Enable TX and RX interrupts
//
void InitMcbspaInt(void)
{
// Reset TX and RX
// Enable interrupts for TX and RX
// Release TX and RX
McbspaRegs.SPCR2.bit.XRST = 0;
McbspaRegs.SPCR1.bit.RRST = 0;
McbspaRegs.MFFINT.bit.XINT = 1;
McbspaRegs.MFFINT.bit.RINT = 1;
McbspaRegs.SPCR2.bit.XRST = 1;
McbspaRegs.SPCR1.bit.RRST = 1;
}
//
// InitMcbspa8bit - McBSP uses an 8-bit word for both TX and RX
//
void InitMcbspa8bit(void)
{
McbspaRegs.RCR1.bit.RWDLEN1 = 0;
McbspaRegs.XCR1.bit.XWDLEN1 = 0;
}
//
// InitMcbspa12bit - McBSP uses an 12-bit word for both TX and RX
//
void InitMcbspa12bit(void)
{
McbspaRegs.RCR1.bit.RWDLEN1 = 1;
McbspaRegs.XCR1.bit.XWDLEN1 = 1;
}
//
// InitMcbspa16bit - McBSP uses an 16-bit word for both TX and RX
//
void InitMcbspa16bit(void)
{
McbspaRegs.RCR1.bit.RWDLEN1 = 2;
McbspaRegs.XCR1.bit.XWDLEN1 = 2;
}
//
// InitMcbspa20bit - McBSP uses an 20-bit word for both TX and RX
//
void InitMcbspa20bit(void)
{
McbspaRegs.RCR1.bit.RWDLEN1 = 3;
McbspaRegs.XCR1.bit.XWDLEN1 = 3;
}
//
// InitMcbspa24bit - McBSP uses an 24-bit word for both TX and RX
//
void InitMcbspa24bit(void)
{
McbspaRegs.RCR1.bit.RWDLEN1 = 4;
McbspaRegs.XCR1.bit.XWDLEN1 = 4;
}
//
// InitMcbspa32bit - McBSP uses an 32-bit word for both TX and RX
//
void InitMcbspa32bit(void)
{
McbspaRegs.RCR1.bit.RWDLEN1 = 5;
McbspaRegs.XCR1.bit.XWDLEN1 = 5;
}
//
// InitMcbspaGpio - Assign GPIO pins to the McBSP peripheral
// (Note: This function must be called from CPU1.)
//
void InitMcbspaGpio(void)
{
#ifdef CPU1
EALLOW;
//
// This specifies which of the possible GPIO pins will be
// McBSPA functional pins. Comment out unwanted connections.
// Set qualification for selected input pins to asynchronous only
// This will select asynchronous (no qualification) for the selected pins.
//
//
// MDXA
// GPIO20
// GPIO84
//
GpioCtrlRegs.GPAMUX2.bit.GPIO20 = 2;
//GpioCtrlRegs.GPCGMUX2.bit.GPIO84 = 3;
//GpioCtrlRegs.GPCMUX2.bit.GPIO84 = 3;
//
// MDRA
// GPIO21 with asynchronous qualification
// GPIO85 with asynchronous qualification
//
GpioCtrlRegs.GPAMUX2.bit.GPIO21 = 2;
GpioCtrlRegs.GPAQSEL2.bit.GPIO21 = 3;
//GpioCtrlRegs.GPCGMUX2.bit.GPIO85 = 3;
//GpioCtrlRegs.GPCMUX2.bit.GPIO85 = 3;
//GpioCtrlRegs.GPCQSEL2.bit.GPIO85 = 3;
//
// MCLKXA
// GPIO22 with asynchronous qualification
// GPIO86 with asynchronous qualification
//
GpioCtrlRegs.GPAMUX2.bit.GPIO22 = 2;
//GpioCtrlRegs.GPAQSEL2.bit.GPIO22 = 3;
//GpioCtrlRegs.GPCGMUX2.bit.GPIO86 = 3;
//GpioCtrlRegs.GPCMUX2.bit.GPIO86 = 3;
//GpioCtrlRegs.GPCQSEL2.bit.GPIO86 = 3;
//
// MCLKRA
// Select one of the following
// GPIO7 with asynchronous qualification
// GPIO58 with asynchronous qualification
//
GpioCtrlRegs.GPAMUX1.bit.GPIO7 = 2;
GpioCtrlRegs.GPAQSEL1.bit.GPIO7 = 3;
//GpioCtrlRegs.GPBMUX2.bit.GPIO58 = 1;
//GpioCtrlRegs.GPBQSEL2.bit.GPIO58 = 3;
//
// MFSXA
// GPIO23 with asynchronous qualification
// GPIO87 with asynchronous qualification
//
GpioCtrlRegs.GPAMUX2.bit.GPIO23 = 2;
//GpioCtrlRegs.GPAQSEL2.bit.GPIO23 = 3;
//GpioCtrlRegs.GPCGMUX2.bit.GPIO87 = 3;
//GpioCtrlRegs.GPCMUX2.bit.GPIO87 = 3;
//GpioCtrlRegs.GPCQSEL2.bit.GPIO87 = 3;
//
// MFSRA
// Select one of the following
// GPIO5 with asynchronous qualification
// GPIO59 with asynchronous qualification
//
GpioCtrlRegs.GPAMUX1.bit.GPIO5 = 2;
GpioCtrlRegs.GPAQSEL1.bit.GPIO5 = 3;
//GpioCtrlRegs.GPBMUX2.bit.GPIO59 = 1;
//GpioCtrlRegs.GPBQSEL2.bit.GPIO59 = 3;
EDIS;
#endif
}
//
// InitMcbspb - McBSPB initialization routine for examples
//
void InitMcbspb(void)
{
//
// Reset the McBSP
// Disable all interrupts
// Frame sync generator reset
// Sample rate generator reset
// Transmitter reset
// Receiver reset
//
McbspbRegs.SPCR2.bit.FRST = 0;
McbspbRegs.SPCR2.bit.GRST = 0;
McbspbRegs.SPCR2.bit.XRST = 0;
McbspbRegs.SPCR1.bit.RRST = 0;
//
// Enable loop back mode
// This does not require external hardware
//
McbspbRegs.SPCR2.all = 0x0000;
McbspbRegs.SPCR1.all = 0x8000;
//
// RX data delay is 1 bit
// TX data delay is 1 bit
//
McbspbRegs.RCR2.bit.RDATDLY = 1;
McbspbRegs.XCR2.bit.XDATDLY = 1;
//
// No clock sync for CLKG
// Frame-synchronization period
//
McbspbRegs.SRGR2.bit.GSYNC = 0;
McbspbRegs.SRGR2.bit.FPER = 320;
//
// Frame-synchronization pulses from
// the sample rate generator
//
McbspbRegs.SRGR2.bit.FSGM = 1;
//
// Sample rate generator input clock is LSPCLK
//
McbspbRegs.SRGR2.bit.CLKSM = 1;
McbspbRegs.PCR.bit.SCLKME = 0;
//
// Divide-down value for CLKG
// Frame-synchronization pulse width
//
McbspbRegs.SRGR1.bit.CLKGDV = CLKGDV_VAL;
clkg_delay_loop();
McbspbRegs.SRGR1.bit.FWID = 1;
//
// CLKX is driven by the sample rate generator
// Transmit frame synchronization generated by internal
// sample rate generator
//
McbspbRegs.PCR.bit.CLKXM = 1;
McbspbRegs.PCR.bit.FSXM = 1;
//
// Enable Sample rate generator and
// wait at least 2 CLKG clock cycles
//
McbspbRegs.SPCR2.bit.GRST = 1;
clkg_delay_loop();
//
// Release from reset
// RX, TX and frame sync generator
//
McbspbRegs.SPCR2.bit.XRST = 1;
McbspbRegs.SPCR1.bit.RRST = 1;
McbspbRegs.SPCR2.bit.FRST = 1;
}
//
// InitMcbspbInt - Enable TX and RX interrupts
//
void InitMcbspbInt(void)
{
//
// Reset TX and RX
// Enable interrupts for TX and RX
// Release TX and RX
//
McbspbRegs.SPCR2.bit.XRST = 0;
McbspbRegs.SPCR1.bit.RRST = 0;
McbspbRegs.MFFINT.bit.XINT = 1;
McbspbRegs.MFFINT.bit.RINT = 1;
McbspbRegs.SPCR2.bit.XRST = 1;
McbspbRegs.SPCR1.bit.RRST = 1;
}
//
// InitMcbspb8bit - McBSPB uses an 8-bit word for both TX and RX
//
void InitMcbspb8bit(void)
{
McbspbRegs.RCR1.bit.RWDLEN1 = 0;
McbspbRegs.XCR1.bit.XWDLEN1 = 0;
}
//
// IniMcbspb12bit - McBSPB uses an 12-bit word for both TX and RX
//
void IniMcbspb12bit(void)
{
McbspbRegs.RCR1.bit.RWDLEN1 = 1;
McbspbRegs.XCR1.bit.XWDLEN1 = 1;
}
//
// InitMcbspb16bit - McBSPB uses an 16-bit word for both TX and RX
//
void InitMcbspb16bit(void)
{
McbspbRegs.RCR1.bit.RWDLEN1 = 2;
McbspbRegs.XCR1.bit.XWDLEN1 = 2;
}
//
// InitMcbspb20bit - McBSPB uses an 20-bit word for both TX and RX
//
void InitMcbspb20bit(void)
{
McbspbRegs.RCR1.bit.RWDLEN1 = 3;
McbspbRegs.XCR1.bit.XWDLEN1 = 3;
}
//
// InitMcbspb24bit - McBSPB uses an 24-bit word for both TX and RX
//
void InitMcbspb24bit(void)
{
McbspbRegs.RCR1.bit.RWDLEN1 = 4;
McbspbRegs.XCR1.bit.XWDLEN1 = 4;
}
//
// InitMcbspb32bit - McBSPB uses an 32-bit word for both TX and RX
//
void InitMcbspb32bit(void)
{
McbspbRegs.RCR1.bit.RWDLEN1 = 5;
McbspbRegs.XCR1.bit.XWDLEN1 = 5;
}
//
// InitMcbspbGpio - Assign GPIO pins to the McBSP peripheral
// (Note: This function must be called from CPU1.)
//
void InitMcbspbGpio(void)
{
#ifdef CPU1
EALLOW;
//
// This specifies which of the possible GPIO pins will be
// McBSPB functional pins. Comment out unwanted connections.
// Set qualification for selected input pins to asynchronous only
// This will select asynchronous (no qualification) for the selected pins.
//
//
// Select one of the following for MDXB
// GPIO24
// GPIO84
//
//GpioCtrlRegs.GPAMUX2.bit.GPIO24 = 3;
GpioCtrlRegs.GPCGMUX2.bit.GPIO84 = 1;
GpioCtrlRegs.GPCMUX2.bit.GPIO84 = 2;
//
// MDRB
// GPIO13 with asynchronous qualification
// GPIO25 with asynchronous qualification
// GPIO85 with asynchronous qualification
//
//GpioCtrlRegs.GPAMUX1.bit.GPIO13 = 3;
//GpioCtrlRegs.GPAQSEL1.bit.GPIO13 = 3;
//GpioCtrlRegs.GPAMUX2.bit.GPIO25 = 3;
//GpioCtrlRegs.GPAQSEL2.bit.GPIO25 = 3;
GpioCtrlRegs.GPCGMUX2.bit.GPIO85 = 1;
GpioCtrlRegs.GPCMUX2.bit.GPIO85 = 2;
GpioCtrlRegs.GPCQSEL2.bit.GPIO85 = 3;
//
// MCLKXB
// GPIO14 with asynchronous qualification
// GPIO26 with asynchronous qualification
// GPIO86 with asynchronous qualification
//
//GpioCtrlRegs.GPAMUX1.bit.GPIO14 = 3;
//GpioCtrlRegs.GPAQSEL1.bit.GPIO14 = 3;
//GpioCtrlRegs.GPAMUX2.bit.GPIO26 = 3;
//GpioCtrlRegs.GPAQSEL2.bit.GPIO26 = 3;
GpioCtrlRegs.GPCGMUX2.bit.GPIO86 = 1;
GpioCtrlRegs.GPCMUX2.bit.GPIO86 = 2;
GpioCtrlRegs.GPCQSEL2.bit.GPIO86= 3;
//
// MCLKRB
// Select one of the following
// GPIO3 with asynchronous qualification
// GPIO60 with asynchronous qualification
//
//GpioCtrlRegs.GPAMUX1.bit.GPIO3 = 3;
//GpioCtrlRegs.GPAQSEL1.bit.GPIO3 = 3;
GpioCtrlRegs.GPBMUX2.bit.GPIO60 = 1;
GpioCtrlRegs.GPBQSEL2.bit.GPIO60 = 3;
//
// MFSXB
// GPIO15 with asynchronous qualification
// GPIO27 with asynchronous qualification
// GPIO87 with asynchronous qualification
//
//GpioCtrlRegs.GPAMUX1.bit.GPIO15 = 3;
//GpioCtrlRegs.GPAQSEL1.bit.GPIO15 = 3;
//GpioCtrlRegs.GPAMUX2.bit.GPIO27 = 3;
//GpioCtrlRegs.GPAQSEL2.bit.GPIO27 = 3;
GpioCtrlRegs.GPCGMUX2.bit.GPIO87 = 1;
GpioCtrlRegs.GPCMUX2.bit.GPIO87 = 2;
GpioCtrlRegs.GPCQSEL2.bit.GPIO87= 3;
//
// MFSRB
// Select one of the following
// GPIO1 with asynchronous qualification
// GPIO61 with asynchronous qualification
//
//GpioCtrlRegs.GPAMUX1.bit.GPIO1 = 3;
//GpioCtrlRegs.GPAQSEL1.bit.GPIO1 = 3;
GpioCtrlRegs.GPBMUX2.bit.GPIO61 = 1;
GpioCtrlRegs.GPBQSEL2.bit.GPIO61 = 3;
EDIS;
#endif
}
//
// delay_loop - Delay function (at least 2 SRG cycles)
// Required in McBSP initialization
//
void delay_loop(void)
{
long i;
for (i = 0; i < MCBSP_INIT_DELAY; i++) {}
}
//
// clkg_delay_loop - Delay function (at least 2 CLKG cycles)
// Required in McBSP init
//
void clkg_delay_loop(void)
{
long i;
for (i = 0; i < MCBSP_CLKG_DELAY; i++) {}
}
//
// End of file
//