empty_project_28377D/device/driverlib/dcsm.c

376 lines
11 KiB
C
Raw Permalink Normal View History

//#############################################################################
//
// FILE: dcsm.c
//
// TITLE: C28x Driver for the DCSM security module.
//
//#############################################################################
// $Copyright:
// Copyright (C) 2022 Texas Instruments Incorporated - http://www.ti.com
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// Neither the name of Texas Instruments Incorporated nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// $
//#############################################################################
#include "dcsm.h"
//*****************************************************************************
//
// DCSM_unlockZone1CSM
//
//*****************************************************************************
void
DCSM_unlockZone1CSM(const DCSM_CSMPasswordKey * const psCMDKey)
{
uint32_t linkPointer;
uint32_t zsbBase = (DCSM_Z1OTP_BASE + 0x20U); // base address of the ZSB
int32_t bitPos = 28; // Bits [28:0] point to a ZSB (29-bit link pointer)
int32_t zeroFound = 0;
//
// Check the arguments.
//
ASSERT(psCMDKey != NULL);
linkPointer = HWREG(DCSM_Z1_BASE + DCSM_O_Z1_LINKPOINTER);
//
// Bits 31 and 30 as most-significant 0 are invalid LinkPointer options
//
linkPointer = linkPointer << 3;
//
// Zone-Select Block (ZSB) selection using Link-Pointers
// and 0's bit position within the Link pointer
//
while((zeroFound == 0) && (bitPos > -1))
{
//
// The most significant bit position in the resolved link pointer
// which is 0, defines the valid base address for the ZSB.
//
if((linkPointer & 0x80000000U) == 0U)
{
zeroFound = 1;
//
// Base address of the ZSB is calculated using
// 0x10 as the slope/step with which zsbBase expands with
// change in the bitPos and 3*0x10 is the offset
//
zsbBase = (DCSM_Z1OTP_BASE + (((uint32_t)bitPos + 3U) * 0x10U));
}
else
{
//
// Move through the linkPointer to find the most significant
// bit position of 0
//
bitPos--;
linkPointer = linkPointer << 1;
}
}
//
// Perform dummy reads on the 128-bit password
// Using linkPointer because it is no longer needed
//
linkPointer = HWREG(zsbBase + DCSM_O_Z1_CSMPSWD0);
linkPointer = HWREG(zsbBase + DCSM_O_Z1_CSMPSWD1);
linkPointer = HWREG(zsbBase + DCSM_O_Z1_CSMPSWD2);
linkPointer = HWREG(zsbBase + DCSM_O_Z1_CSMPSWD3);
if(psCMDKey != NULL)
{
HWREG(DCSM_Z1_BASE + DCSM_O_Z1_CSMKEY0) = psCMDKey->csmKey0;
HWREG(DCSM_Z1_BASE + DCSM_O_Z1_CSMKEY1) = psCMDKey->csmKey1;
HWREG(DCSM_Z1_BASE + DCSM_O_Z1_CSMKEY2) = psCMDKey->csmKey2;
HWREG(DCSM_Z1_BASE + DCSM_O_Z1_CSMKEY3) = psCMDKey->csmKey3;
}
}
//*****************************************************************************
//
// DCSM_unlockZone2CSM
//
//*****************************************************************************
void
DCSM_unlockZone2CSM(const DCSM_CSMPasswordKey * const psCMDKey)
{
uint32_t linkPointer;
uint32_t zsbBase = (DCSM_Z2OTP_BASE + 0x20U); // base address of the ZSB
int32_t bitPos = 28; // Bits [28:0] point to a ZSB (29-bit link pointer)
int32_t zeroFound = 0;
//
// Check the arguments.
//
ASSERT(psCMDKey != NULL);
linkPointer = HWREG(DCSM_Z2_BASE + DCSM_O_Z2_LINKPOINTER);
//
// Bits 31 and 30 as most-significant 0 are invalid LinkPointer options
//
linkPointer = linkPointer << 3;
//
// Zone-Select Block (ZSB) selection using Link-Pointers
// and 0's bit position within the Link pointer
//
while((zeroFound == 0) && (bitPos > -1))
{
//
// The most significant bit position in the resolved link pointer
// which is 0, defines the valid base address for the ZSB.
//
if((linkPointer & 0x80000000U) == 0U)
{
zeroFound = 1;
//
// Base address of the ZSB is calculated using
// 0x10 as the slope/step with which zsbBase expands with
// change in the bitPos and 3*0x10 is the offset
//
zsbBase = (DCSM_Z2OTP_BASE + (((uint32_t)bitPos + 3U) * 0x10U));
}
else
{
//
// Move through the linkPointer to find the most significant
// bit position of 0
//
bitPos--;
linkPointer = linkPointer << 1;
}
}
//
// Perform dummy reads on the 128-bit password
// Using linkPointer because it is no longer needed
//
linkPointer = HWREG(zsbBase + DCSM_O_Z2_CSMPSWD0);
linkPointer = HWREG(zsbBase + DCSM_O_Z2_CSMPSWD1);
linkPointer = HWREG(zsbBase + DCSM_O_Z2_CSMPSWD2);
linkPointer = HWREG(zsbBase + DCSM_O_Z2_CSMPSWD3);
if(psCMDKey != NULL)
{
HWREG(DCSM_Z2_BASE + DCSM_O_Z2_CSMKEY0) = psCMDKey->csmKey0;
HWREG(DCSM_Z2_BASE + DCSM_O_Z2_CSMKEY1) = psCMDKey->csmKey1;
HWREG(DCSM_Z2_BASE + DCSM_O_Z2_CSMKEY2) = psCMDKey->csmKey2;
HWREG(DCSM_Z2_BASE + DCSM_O_Z2_CSMKEY3) = psCMDKey->csmKey3;
}
}
//*****************************************************************************
//
// DCSM_getZone1FlashEXEStatus
//
//*****************************************************************************
DCSM_EXEOnlyStatus
DCSM_getZone1FlashEXEStatus(DCSM_Sector sector)
{
uint16_t regValue;
DCSM_EXEOnlyStatus status;
//
// Check if sector belongs to this zone
//
if(DCSM_getFlashSectorZone(sector) != DCSM_MEMORY_ZONE1)
{
status = DCSM_INCORRECT_ZONE;
}
else
{
//
// Get the EXE status register
//
regValue = HWREGH(DCSM_Z1_BASE + DCSM_O_Z1_EXEONLYSECTR);
//
// Get the EXE status of the Flash Sector
//
status = (DCSM_EXEOnlyStatus)((uint16_t)
((regValue >> (uint16_t)sector) &
0x01U));
}
return(status);
}
//*****************************************************************************
//
// DCSM_getZone1RAMEXEStatus
//
//*****************************************************************************
DCSM_EXEOnlyStatus
DCSM_getZone1RAMEXEStatus(DCSM_RAMModule module)
{
ASSERT(module != DCSM_CLA);
uint32_t status;
//
// Check if module belongs to this zone
//
if(DCSM_getRAMZone(module) != DCSM_MEMORY_ZONE1)
{
status = DCSM_INCORRECT_ZONE;
}
else
{
//
// Get the EXE status of the RAM Module
//
status = (uint16_t)((HWREGH(DCSM_Z1_BASE + DCSM_O_Z1_EXEONLYRAMR) >>
(uint16_t)module) & 0x01U);
}
return((DCSM_EXEOnlyStatus)status);
}
//*****************************************************************************
//
// DCSM_getZone2FlashEXEStatus
//
//*****************************************************************************
DCSM_EXEOnlyStatus
DCSM_getZone2FlashEXEStatus(DCSM_Sector sector)
{
uint16_t regValue;
DCSM_EXEOnlyStatus status;
//
// Check if sector belongs to this zone
//
if(DCSM_getFlashSectorZone(sector) != DCSM_MEMORY_ZONE2)
{
status = DCSM_INCORRECT_ZONE;
}
else
{
//
// Get the EXE status register
//
regValue = HWREGH(DCSM_Z2_BASE + DCSM_O_Z2_EXEONLYSECTR);
//
// Get the EXE status of the Flash Sector
//
status = (DCSM_EXEOnlyStatus)((uint16_t)((regValue >>
(uint16_t)sector) & 0x01U));
}
return(status);
}
//*****************************************************************************
//
// DCSM_getZone2RAMEXEStatus
//
//*****************************************************************************
DCSM_EXEOnlyStatus
DCSM_getZone2RAMEXEStatus(DCSM_RAMModule module)
{
ASSERT(module != DCSM_CLA);
uint32_t status;
//
// Check if module belongs to this zone
//
if(DCSM_getRAMZone(module) != DCSM_MEMORY_ZONE2)
{
status = DCSM_INCORRECT_ZONE;
}
else
{
//
// Get the EXE status of the RAM Module
//
status = (uint16_t)((HWREGH(DCSM_Z2_BASE +
DCSM_O_Z2_EXEONLYRAMR) >> (uint16_t)module) & 0x01U);
}
return((DCSM_EXEOnlyStatus)status);
}
//*****************************************************************************
//
// DCSM_claimZoneSemaphore
//
//*****************************************************************************
bool
DCSM_claimZoneSemaphore(DCSM_SemaphoreZone zone)
{
//
// FLSEM register address.
//
uint32_t regAddress = DCSMCOMMON_BASE + DCSM_O_FLSEM;
EALLOW;
//
// Write 0xA5 to the key and write the zone that is attempting to claim the
// Flash Pump Semaphore to the semaphore bits.
//
HWREGH(regAddress) = ((uint16_t)FLSEM_KEY << DCSM_FLSEM_KEY_S) |
(uint16_t)zone;
EDIS;
//
// If the calling function was unable to claim the zone semaphore, then
// return false
//
return(((HWREGH(regAddress) & DCSM_FLSEM_SEM_M) == (uint16_t)zone) ?
true : false);
}
//*****************************************************************************
//
// DCSM_releaseZoneSemaphore
//
//*****************************************************************************
bool
DCSM_releaseZoneSemaphore(void)
{
//
// FLSEM register address.
//
uint32_t regAddress = DCSMCOMMON_BASE + DCSM_O_FLSEM;
EALLOW;
//
// Write 0xA5 to the key and write the zone that is attempting to claim the
// Flash Pump Semaphore to the semaphore bits.
//
HWREGH(regAddress) = ((uint16_t)FLSEM_KEY << DCSM_FLSEM_KEY_S);
EDIS;
//
// If the calling function was unable to release the zone semaphore, then
// return false
//
return(((HWREGH(regAddress) & DCSM_FLSEM_SEM_M) == 0x0U) ? true : false);
}