empty_project_28377D/device/driverlib/upp.c

297 lines
9.0 KiB
C
Raw Permalink Normal View History

//###########################################################################
//
// FILE: upp.c
//
// TITLE: C28x uPP driver.
//
//###########################################################################
// $Copyright:
// Copyright (C) 2022 Texas Instruments Incorporated - http://www.ti.com
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// Neither the name of Texas Instruments Incorporated nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// $
//###########################################################################
#include <stdbool.h>
#include <stdint.h>
#include "upp.h"
//*****************************************************************************
//
// UPP_setDMAReadThreshold
//
//*****************************************************************************
void
UPP_setDMAReadThreshold(uint32_t base, UPP_DMAChannel channel,
UPP_ThresholdSize size)
{
//
// Check the arguments.
//
ASSERT(UPP_isBaseValid(base));
if(channel == UPP_DMA_CHANNEL_I)
{
//
// Set DMA read threshold for channel I.
//
HWREGH(base + UPP_O_THCFG) = (HWREGH(base + UPP_O_THCFG) &
~(uint16_t)UPP_THCFG_RDSIZEI_M) |
(uint16_t)size;
}
else
{
//
// Set DMA read threshold for channel Q.
//
HWREGH(base + UPP_O_THCFG) = (HWREGH(base + UPP_O_THCFG) &
~(uint16_t)UPP_THCFG_RDSIZEQ_M) |
((uint16_t)size << UPP_THCFG_RDSIZEQ_S);
}
}
//*****************************************************************************
//
// UPP_setDMADescriptor
//
//*****************************************************************************
void
UPP_setDMADescriptor(uint32_t base, UPP_DMAChannel channel,
const UPP_DMADescriptor * const desc)
{
//
// Check the arguments.
//
ASSERT(UPP_isBaseValid(base));
if(channel == UPP_DMA_CHANNEL_I)
{
//
// Sets DMA descriptors for channel I.
//
HWREG(base + UPP_O_CHIDESC0) = desc->addr;
HWREG(base + UPP_O_CHIDESC1) = ((uint32_t)desc->byteCount |
(((uint32_t)desc->lineCount) <<
UPP_CHIDESC1_LCNT_S));
HWREGH(base + UPP_O_CHIDESC2) = desc->lineOffset;
}
else
{
//
// Sets DMA descriptors for channel Q.
//
HWREG(base + UPP_O_CHQDESC0) = desc->addr;
HWREG(base + UPP_O_CHQDESC1) = ((uint32_t)desc->byteCount |
(((uint32_t)desc->lineCount) <<
UPP_CHQDESC1_LCNT_S));
HWREGH(base + UPP_O_CHQDESC2) = desc->lineOffset;
}
}
//*****************************************************************************
//
// UPP_getDMAChannelStatus
//
//*****************************************************************************
void
UPP_getDMAChannelStatus(uint32_t base, UPP_DMAChannel channel,
UPP_DMAChannelStatus * const status)
{
uint32_t cntStatus;
//
// Check the arguments.
//
ASSERT(UPP_isBaseValid(base));
if(channel == UPP_DMA_CHANNEL_I)
{
//
// Return the current status for channel I.
//
cntStatus = HWREG(base + UPP_O_CHIST1);
status->curAddr = HWREG(base + UPP_O_CHIST0);
status->curByteCount = (uint16_t)(cntStatus & UPP_CHIDESC1_BCNT_M);
status->curLineCount = (uint16_t)(cntStatus >> UPP_CHIDESC1_LCNT_S);
}
else
{
//
// Return the current status for channel Q.
//
cntStatus = HWREG(base + UPP_O_CHQST1);
status->curAddr = HWREG(base + UPP_O_CHQST0);
status->curByteCount = (uint16_t)(cntStatus & UPP_CHQDESC1_BCNT_M);
status->curLineCount = (uint16_t)(cntStatus >> UPP_CHQDESC1_LCNT_S);
}
}
//*****************************************************************************
//
// UPP_isDescriptorPending
//
//*****************************************************************************
bool
UPP_isDescriptorPending(uint32_t base, UPP_DMAChannel channel)
{
bool status;
//
// Check the arguments.
//
ASSERT(UPP_isBaseValid(base));
if(channel == UPP_DMA_CHANNEL_I)
{
//
// Return the pend status for channel I descriptor.
//
status = ((HWREGH(base + UPP_O_CHIST2) &
(uint16_t)UPP_CHIST2_PEND) == UPP_CHIST2_PEND);
}
else
{
//
// Return the pend status for channel Q descriptor.
//
status = ((HWREGH(base + UPP_O_CHQST2) &
(uint16_t)UPP_CHQST2_PEND) == UPP_CHQST2_PEND);
}
return(status);
}
//*****************************************************************************
//
// UPP_isDescriptorActive
//
//*****************************************************************************
bool
UPP_isDescriptorActive(uint32_t base, UPP_DMAChannel channel)
{
bool status;
//
// Check the arguments.
//
ASSERT(UPP_isBaseValid(base));
if(channel == UPP_DMA_CHANNEL_I)
{
//
// Returns active status for channel I descriptor.
//
status = ((HWREGH(base + UPP_O_CHIST2) &
(uint16_t)UPP_CHIST2_ACT) == UPP_CHIST2_ACT);
}
else
{
//
// Returns active status for channel Q descriptor.
//
status = ((HWREGH(base + UPP_O_CHQST2) &
(uint16_t)UPP_CHQST2_ACT) == UPP_CHQST2_ACT);
}
return(status);
}
//*****************************************************************************
//
// UPP_getDMAFIFOWatermark
//
//*****************************************************************************
uint16_t
UPP_getDMAFIFOWatermark(uint32_t base, UPP_DMAChannel channel)
{
uint16_t status;
//
// Check the arguments.
//
ASSERT(UPP_isBaseValid(base));
if(channel == UPP_DMA_CHANNEL_I)
{
//
// Return the watermark for FIFO block count for DMA Channel I.
//
status = ((HWREGH(base + UPP_O_CHIST2) &
(uint16_t)UPP_CHIST2_WM_M) >> UPP_CHIST2_WM_S);
}
else
{
//
// Return the watermark for FIFO block count for DMA Channel I.
//
status = ((HWREGH(base + UPP_O_CHQST2) &
(uint16_t)UPP_CHQST2_WM_M) >> UPP_CHQST2_WM_S);
}
return(status);
}
//*****************************************************************************
//
// UPP_readRxMsgRAM
//
//*****************************************************************************
void
UPP_readRxMsgRAM(uint32_t rxBase, uint16_t array[], uint16_t length,
uint16_t offset)
{
uint16_t i;
//
// Check the arguments.
//
ASSERT(UPP_isRxBaseValid(rxBase));
ASSERT((length + offset) < UPP_RX_MSGRAM_MAX_SIZE);
for(i = 0U; i < length; i++)
{
//
// Read one 16-bit word.
//
array[i] = HWREGH(rxBase + offset + i);
}
}
//*****************************************************************************
//
// UPP_writeTxMsgRAM
//
//*****************************************************************************
void
UPP_writeTxMsgRAM(uint32_t txBase, const uint16_t array[], uint16_t length,
uint16_t offset)
{
uint16_t i;
//
// Check the arguments.
//
ASSERT(UPP_isTxBaseValid(txBase));
ASSERT((length + offset) < UPP_TX_MSGRAM_MAX_SIZE);
for(i = 0U; i < length; i++)
{
//
// Write one 16-bit word.
//
HWREGH(txBase + offset + i) = array[i];
}
}